wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate
2sin2xcosx6cos2x4sinxdx

Open in App
Solution

I=(2sin2xcosx)6cos2x4sinxdx

=(4sinxcosxcosx)6cos2x4sinxdx

=cosx(4sinx1)61+sin2x4sinxdx

=cosx(4sinx1)sin2x4sinx+5dx

Put t=sinxdt=cosxdx

Now,I=(4t1)dtt24t+5

Let 4t1=A×ddt(t24t+5)+B

4t1=A(2t4)+B

2A=4,4A+B=1

A=2,B=1+4A=1+4×2=1+8=7

A=2,B=7

So,4t1=2(2t4)+7

So,I=[2(2t4)+7]dtt24t+5

=2(2t4)dtt24t+5+7dtt24t+5

I=I1+7dtt24t+5

Let I1=2(2t4)dtt24t+5

Take v=t24t+5dv=(2t4)dt

I1=2dvv=2log|v|

=log(t24t+5) where v=t24t+5

=log(sin2x4sinx+5) where t=sinx

I=log(sin2x4sinx+5)+7dtt24t+4+1

I=log(sin2x4sinx+5)+7dt(t2)2+1

I=log(sin2x4sinx+5)+7tan1(t2)+c

I=log(sin2x4sinx+5)+7tan1(sinx2)+c
where t=sinx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon