I=∫(2sin2x−cosx)6−cos2x−4sinxdx
=∫(4sinxcosx−cosx)6−cos2x−4sinxdx
=∫cosx(4sinx−1)6−1+sin2x−4sinxdx
=∫cosx(4sinx−1)sin2x−4sinx+5dx
Put t=sinx⇒dt=cosxdx
Now,I=∫(4t−1)dtt2−4t+5
Let 4t−1=A×ddt(t2−4t+5)+B
4t−1=A(2t−4)+B
⇒2A=4,−4A+B=−1
⇒A=2,B=−1+4A=−1+4×2=−1+8=7
∴A=2,B=7
So,4t−1=2(2t−4)+7
So,I=∫[2(2t−4)+7]dtt2−4t+5
=2∫(2t−4)dtt2−4t+5+7∫dtt2−4t+5
I=I1+7∫dtt2−4t+5
Let I1=2∫(2t−4)dtt2−4t+5
Take v=t2−4t+5⇒dv=(2t−4)dt
I1=2∫dvv=2log|v|
=log(t2−4t+5) where v=t2−4t+5
=log(sin2x−4sinx+5) where t=sinx
I=log(sin2x−4sinx+5)+7∫dtt2−4t+4+1
I=log(sin2x−4sinx+5)+7∫dt(t−2)2+1
I=log(sin2x−4sinx+5)+7tan−1(t−2)+c
I=log(sin2x−4sinx+5)+7tan−1(sinx−2)+c
where t=sinx