∫(1−v2v+v3)dv
=−13∫(−3+3v2v+v3)dv
=−13∫(1+3v2)−4v+v3dv
=−13∫(1+3v2)v+v3dv+43∫dvv(1+v2)
putting v+v3=t
(1+3v2)dv=dt
=−13∫dtt+43∫dvv(1+v2)
=−13log|v+v3|+43∫dvv(1+v2)
Let
1v(1+v2)=Av+Bv+C1+v2
1=A(1+v2)+(Bv+C)v
Put v=0
A=1
Put v=1
B+C=−1 --- (i)
put v=−1
B−C=−1 ---- (ii)
Adding (i) ad (ii)
B=−1 and C=0
So,
∫dvv(1+v2)=∫(1v+−v1+v2)dv
∫dvv(1+v2)=log|v|−12log|1+v2|
∫(1−v2v+v3)dv=−13log|v+v3|+43log|v|−23log|1+v2|+C