I=∫1×(logx)2dx
Let u=(logx)2⇒du=2logxxdx
Let v=1, now applying integration by-parts, we get
I=x(logx)2−∫x×2logxxdx
I=x(logx)2−2∫logxdx
Let u=logx⇒du=1xdx
dv=dx⇒v=x
I=x(logx)2−2[xlogx−∫x×1xdx]
I=x(logx)2−2[xlogx−∫dx]
I=x(logx)2−2[xlogx−x]+c
I=x(logx)2−2xlogx+2x+c