wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate -π4π4logsinx+cosxdx.


Open in App
Solution

Integrate the given Expression:

Using the property -aafxdx=0afxdx+0af-xdx

Let I=-π4π4logsinx+cosxdx

Apply the property written above

I=0π4logsinx+cosxdx+0π4logcosx-sinxdxsin-x=-sinxI=0π4logsinx+cosxcosx-sinxdxlogab=loga+logbI=0π4logcos2x-sin2xdxa2-b2=a+ba-bI=0π4logcos2xdxcos2x=cos2x-sin2x

Let 2x=t Differentiating both sides

dx=dt2I=120π2logcostdtI=120π2logcostdt

Apply the property

0afxdx=0afa-xdxI=120π2logsintdtcosπ2-x=sinx

Add both I

2I=120π2logsin2t2dtsin2x=2sinxcosx2I=120π2logsin2tdt-log22logab=loga-logb

Let 2t=u Differentiating both sides

dt=du22I=120πlogsinudu-log22

Apply the property

02afxdx=0afxdx+0af2a-xdx2I=120π2logsinudu-120π2log22+120π2logsinπ-udu-120π2log22

Since

sinπ-u=sinu2I=I-π4log2I=-π4log2

Hence -π4π4logsinx+cosxdx is -π4log2


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon