Integrate ∫-π4π4logsinx+cosxdx.
Integrate the given Expression:
Using the property ∫-aafxdx=∫0afxdx+∫0af-xdx
Let I=∫-π4π4logsinx+cosxdx
Apply the property written above
⇒I=∫0π4logsinx+cosxdx+∫0π4logcosx-sinxdx∵sin-x=-sinx⇒I=∫0π4logsinx+cosxcosx-sinxdx∵logab=loga+logb⇒I=∫0π4logcos2x-sin2xdx∵a2-b2=a+ba-b⇒I=∫0π4logcos2xdx∵cos2x=cos2x-sin2x
Let 2x=t Differentiating both sides
⇒dx=dt2⇒I=12∫0π2logcostdt⇒I=12∫0π2logcostdt
Apply the property
∫0afxdx=∫0afa-xdx⇒I=12∫0π2logsintdt∵cosπ2-x=sinx
Add both I
⇒2I=12∫0π2logsin2t2dt∵sin2x=2sinxcosx⇒2I=12∫0π2logsin2tdt-log22∵logab=loga-logb
Let 2t=u Differentiating both sides
⇒dt=du2⇒2I=12∫0πlogsinudu-log22
∫02afxdx=∫0afxdx+∫0af2a-xdx⇒2I=12∫0π2logsinudu-12∫0π2log22+12∫0π2logsinπ-udu-12∫0π2log22
Since
sinπ-u=sinu⇒2I=I-π4log2⇒I=-π4log2
Hence ∫-π4π4logsinx+cosxdx is -π4log2
Arrange 12,13,34, 56 in ascending order.
Integrate ∫0π4log1+tanxdx.
Evaluate the value of following:-
111+411+311+211
Solve it :-
a-235=-412
Integrate ∫0π2logsinxdx.