wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate sinx2+sin2x.


Open in App
Solution

Step-1 Converting in integrable form:

Let, I=sinx2+sin2xdx

I=sinx1+sin2x+cos2x+2sinxcosxdx[sin2x+cos2x=1,sin2x=2sinxcosx]I=sinx1+sinx+cosx2dx[a+b2=a2+b2+2ab]

Add sinx to the numerator and divide by 2

I=12sinx+sinx1+sinx+cosx2

Add and subtract cosx from the numerator

I=12sinx+sinx+cosx-cosx1+sinx+cosx2dxI=12sinx-cosx1+sinx+cosx2dx+sinx+cosx1+sinx+cosx2dx

Let u=12sinx-cosx1+sinx+cosx2dx and v=12sinx+cosx1+sinx+cosx2dx

I=u+v

Step-2 : Integration by substitution of u:

For u, let sinx+cosx=t

Differentiating both sides with respect to x,

cosx-sinxdx=dtu=-12dt1+t2u=-tan-1t2+C[11+x2=tan-1x]u=-tan-1sinx+cosx2+C

Step-2 : Integration by substitution of v:

We know that 1+sinx+cosx2=2+sin2x (we derived this at the start)

So, v=sinx+cosx2+sin2xdx

Add and subtract 1 from denominator

v=12sinx+cosx2+1+sin2x-1dxv=12sinx+cosx3-1-sin2xdxv=12sinx+cosx3-sin2x+cos2x-2sinxcosxdx[sin2x+cos2x=1,sin2x=2sinxcosx]v=12sinx+cosx3-sinx-cosx2dx[a-b2=a2+b2-2ab]

Let sinx-cosx=t

Differentiate both sides with respect to x,

sinx-cosxdx=dt

v=12dt3-t2v=143log3-t3+t[dta2-t2=12aloga-ta+t]v=143log3-sinx-cosx3+sinx-cosx+C

But, I=u+v

I=-tan-1sinx+cosx2+143log3-sinx-cosx3+sinx-cosx+C

Therefore, sin(x)2+sin(2x)=-tan-1[sinx+cosx]2+143log(3-sinx-cosx3+sinx-cosx)+C.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Vector Triple Product
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon