wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the following: sinxsin(xa)

Open in App
Solution

Let I=sinxsin(xa)dx
=sinxcsc(xa) dx
Take xa=tx=a+t,dx=dt
I=sin(a+t)csct
=sin(a+t)sint dt
=sinacost+sintcosasint dt
=sinacostsint+cosa dt
=sinacostsint dt+cosa dt
Substitute sint=pcostdt=dp in first integral
I=sina1pdp+cosadt
=sinalnp+t cos(a)
Hence, I=sinaln(sin(xa))+cos(a) (xa)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon