wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the following expression with respect to x. 1x4+x2+1

Open in App
Solution

We have,

I=1x4+x2+1dx

I=1(x2x+1)(x2+x+1)dx


I=12x(x2+x+1)dx12x(x2x+1)dx

I=142x+11(x2+x+1)dx122x1+1(x2x+1)dx


I=142x1(x2x+1)dx141(x2x+1)dx+142x+1(x2+x+1)dx+141(x2+x+1)dx

I=142x1(x2x+1)dx+141(x12)2+34dx+142x+1(x2+x+1)dx+141(x+12)2+34dx

I=142x1(x2x+1)dx+141(x12)2+(32)2dx+142x+1(x2+x+1)dx+141(x+12)2+(32)2dx

I=14ln(x2x+1)+14⎢ ⎢ ⎢ ⎢132tan1⎜ ⎜ ⎜ ⎜x1232⎟ ⎟ ⎟ ⎟⎥ ⎥ ⎥ ⎥+14ln(x2+x+1)+14⎢ ⎢ ⎢ ⎢132tan1⎜ ⎜ ⎜ ⎜x+1232⎟ ⎟ ⎟ ⎟⎥ ⎥ ⎥ ⎥+C

I=14ln(x2x+1)+123tan1(2x13)+14ln(x2+x+1)+123tan1(2x+13)+C

I=14ln(x2x+1)+14ln(x2+x+1)+123tan1(2x13)+123tan1(2x+13)+C

Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon