Integrate the following functions. ∫(4x+2)√x2+x+1 dx.
Let I=∫(4x+2)√x2+x+1 dx Let x2+x+1=t On differentiating w.r.t.x, we get 2x+1=dtdx⇒dx=dt(2x+1) ∴I=∫(4x+2)√tdt(2x+1)=∫2(2x+1)√tdt(2x+1)=2∫√tdt=2t(12)+1(12)+1+C=43(x2+x+1)32+C
Integrate the following functions. ∫x+2√x2−1dx.
Integrate the function. ∫√x2+4x+1dx.
Integrate the following functions. ∫5x+3x2+4x+10dx.