wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the following functions.
1(1tanx)dx.

Open in App
Solution

Let I=1(1tanx)dx=11sinxcosxdx=1cosxsinxcosxdx
=122(cosx)dx(cosxsinx)=12cosx+cosx+sinxsinx(cosxsinx)dx
[add and subtract cos x in numerator]
=12[(cosxsinx)(cosxsinx)dx+(cosx+sinx)(cosxsinx)dx]=12[1dx+(cosx+sinx)(cosxsinx)dx]

Let cos x -sin x=t
sinxcosx=dtdx[sinx+cosx]=dtdxdx=dt[sinx+cosx]I=12[1dx+cosx+sinxtdt[sinx+cosx]]=12[1dx1tdt]=12[xlog|t|]+C=12[xlog|cosxsinx|]+C


flag
Suggest Corrections
thumbs-up
38
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon