Integrate the following functions. ∫1cos2x(1−tanx)2dx.
∫1cos2x(1−tanx)2dx=∫sec2x(1−tanx)2dx Let 1-tan x=t ⇒−sec2x=dtdx⇒dx=dt−sec2x∴∫sec2x(1−tanx)2dx=∫sec2xt2dt(−sec2x)=−∫t−2dt=−(−t−2+1−2+1)+C=1t+C=11−tanx+C