Integrate the following functions.
∫1√8+3x−x2dx
Let I=∫1√8+3x−x2dx=∫1√8−√[x2−3x+(32)2−(32)2]dx
=∫1√8−[(x−32)2−94]dx=∫1√8+94−(x−32)2dx=∫1√(√412)2−(x−32)2dx
Let x−32=t⇒dx=dt
∴I=∫1√(√412)2−t2dt=sin−1(t√412)+C[∵∫dx√a2−x2=sin−1(xa)]=sin−1(x−32√412)+C=sin−1(2x−3√41)+C(∵t=x−32)