Integrate the following functions.
∫1√(x−1)(x−2)dx.
Let I=∫1√(x−1)(x−2)dx=∫1√x2−3x+2dx
=∫1√x2−3x+(32)2−(32)2+2dx=∫1√(x+32)2+−9+84=∫1√(x−32)2−(12)2dx
Let x−32=t⇒dx=dt
∴I=∫1√t2−(12)2dt=log∣∣∣t+√t2−14∣∣∣+C[∵∫dx√x2−a2=log|x+√x2−a2|]=log∣∣∣x−32+√(x−32)2−14∣∣∣+C=log∣∣(x−32)+√x2−3x+2∣∣+C