Integrate the following functions. ∫1√x2+2x+2dx.
Let I=∫1√x2+2x+2dx=∫1√(x2+2x+1)+1dx =∫1√(x+1)2+1dx Let x+1=t⇒dx=dt ∴I=∫1√t2+1dt=log|t+√t2+1|+C[∵∫dx√x2+a2=log|x+√x2+a2|]=log|(x+1)+√(x+1)2+1|+C=log|(x+1)+√x2+2x+2|+C(∵t=x+1)
Integrate the rational functions. ∫2xx2+3x+2dx.
Integrate the following functions. ∫x+2√x2+2x+3dx.
Integrate the following functions. ∫x+3x2−2x−5dx.
Integrate the following functions. ∫1√(x−1)(x−2)dx.