Integrate the following functions.
∫1√(x−a)(x−b)dx
Let I=∫1√(x−a)(x−b)dx=∫1√x2−(a+b)x+abdx
=∫1√[x2−(a+b)x+(a+b2)2−(a+b2)2+ab]dx
=∫1√[x−(a+b2)]2+ab−(a+b2)2dx=∫1√[x−(a+b2)]2+ab−(a2+b2+2ab4)dx
=∫1√[x−(a+b2)]2+4ab−a2−b2−2ab4dx=∫1√[x−(a+b2)]2+2ab−a2−b24dx=∫1√[x−(a+b2)]2−(a2+b2−2ab4)dx=∫1√(x−a+b2)2−(a−b2)2dxLet x−a+b2=t⇒dx=dt∴I=∫1√t2−(a−b2)2dt=log∣∣∣t+√t2−(a−b2)2∣∣∣+C[∵∫dx√x2−a2=log|x+√x2−a2|]=log∣∣∣(x−a+b2)+√(x−a+b2)2−(a−b2)2∣∣∣+C(∵t=x−(a+b)2)=log∣∣(x−a+b2)+√(x−a)(x−b)∣∣+C