Integrate the following functions. ∫1x+xlogxdx.
Let I=∫1x(1+logx)dx Let 1+log x=t On differentiating w.r.t.x, we get 1x=dtdx⇒dx=xdt ∴I=∫1x(t)xdt=∫1tdt=log|t|+C=log|1+logx|+C
Integrate the function. ∫x logx dx.
Integrate the following functions. ∫1(1+cotx)dx.
Integrate the following functions. ∫1√(x−a)(x−b)dx
Integrate the following functions. ∫1√(x−1)(x−2)dx.
Integrate the following functions w.r.t. x.
∫1x−x3dx