Integrate the following functions. ∫3x1+2x4dx.
∫3x1+2x4dx=32∫xdx12+x4=32∫xdx12+(x2)2Let x2=t⇒2x=dtdx⇒dx=dt2x∴32∫xdx12+(x2)2=32∫x12+(t)2dt2x=34∫dtt2+(1√2)2=34×11√2tan−1(11√2)+C[∵∫dxa2+x2=1atan−1tan−1(xa)]=32√2tan−1(√2x2)+C (∵t=x2)
Integrate the following functions. ∫1√8+3x−x2dx