Integrate the following functions. ∫4x+1√2x2+x−3dx.
Let 2x2+x−3=t⇒4x+1=dtdx⇒dx=dt4x+1 ∴∫4x+1√2x2+x−3dx=∫4x+1√t×dt4x+1=∫1√tdt=2√t+C=2√2x2+x−3+C(∵t=2x2+x−3)
Integrate the following functions. ∫x+2√x2+2x+3dx.
Integrate the following functions. ∫x+2√4x−x2dx.
Integrate the following functions w.r.t. x.
∫1x1/2+x1/3dx.