Integrate the following functions.
∫5x+3x2+4x+10dx.
Let 5x+3=Addx(x2+4x+10)+B
⇒5x+3=A(2x+4)+B⇒5x+3=2Ax+4A+B
On equating the coefficients of x and constant term on both sides, we get
2A=5⇒A=52
and 4A+B=3⇒B=−7⇒5x+3=52(2x+4)−7
∴∫5x+3√x2+4x+10dx=∫52(2x+4)−7√x2+4x+10dx=52∫2x+4√x2+4x+10dx−71√x2+4x+10dx
Let I1=∫2x+4√x2+4x+10dx and I2=∫1√x2+4x+10dx
∴∫5x+3√x2+4x+10dx=52I1−7I2..........(i)
Now, I1=∫2x+4√x2+4x+10dx
Let x2+4x+10=t⇒(2x+4)dx=dt⇒dx=dt2x+4
∴I1=∫2x+4√t×dt2x+4=∫dt√t=2√t+C1=2√x2+4x+10+C1.......(ii)
And, I2=∫1√x2+4x+10dx=∫1√(x2+4x+4)+6dx
=∫1√(x+2)2+(√6)2dx=log|(x+2)+√(x+2)2+6|+C2.......(iii)[∵∫dx√x2+a2=log|x+√x2+a2|]=log|x+2+√x2+4x+10|+C2
On substituting the values of I1 and I2 from Eqs.(ii) and (iii)in Eq. (i), we get
∫5x+3√x2+4x+10dx=52[2√x2+4x+10]−7log|x+2+√x2+4x+10|+C[∵52C1−7C2=C]=5√x2+4x+10−7log|x+2+√x2+4x+10|+C