wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the following functions.
5x+3x2+4x+10dx.

Open in App
Solution

Let 5x+3=Addx(x2+4x+10)+B
5x+3=A(2x+4)+B5x+3=2Ax+4A+B
On equating the coefficients of x and constant term on both sides, we get
2A=5A=52
and 4A+B=3B=75x+3=52(2x+4)7
5x+3x2+4x+10dx=52(2x+4)7x2+4x+10dx=522x+4x2+4x+10dx71x2+4x+10dx
Let I1=2x+4x2+4x+10dx and I2=1x2+4x+10dx
5x+3x2+4x+10dx=52I17I2..........(i)
Now, I1=2x+4x2+4x+10dx
Let x2+4x+10=t(2x+4)dx=dtdx=dt2x+4
I1=2x+4t×dt2x+4=dtt=2t+C1=2x2+4x+10+C1.......(ii)
And, I2=1x2+4x+10dx=1(x2+4x+4)+6dx
=1(x+2)2+(6)2dx=log|(x+2)+(x+2)2+6|+C2.......(iii)[dxx2+a2=log|x+x2+a2|]=log|x+2+x2+4x+10|+C2

On substituting the values of I1 and I2 from Eqs.(ii) and (iii)in Eq. (i), we get
5x+3x2+4x+10dx=52[2x2+4x+10]7log|x+2+x2+4x+10|+C[52C17C2=C]=5x2+4x+107log|x+2+x2+4x+10|+C


flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon