Integrate the following functions. ∫cosx√1+sinxdx.
∫cosx√1+sinxdx=∫(1+sinx)−12cosxdx Let 1+sinx=t⇒cosx=dtdx⇒dx=dtcosx ∴∫(1+sinx)−12cosxdx=∫(t)−12cosxdtdx=t−12+1(−12+1)+C=2t12+C=2√1+sinx+C
Integrate the rational functions. ∫cosx(1−sinx)(2−sinx)dx.
Integrate the following functions w.r.t. x.
∫cos x√4−sin2xdx.