Integrate the following functions.
∫dx√1+4x2.
∫dx√1+4x2=∫dx√4((12)2+x2)=12∫dx√x2+(12)2=12log∣∣∣x+√x2+(12)2∣∣∣+C(∴∫1√x2+a2dx=log|x+√x2+a2|)=12log∣∣∣x+√4x2+12∣∣∣+C=12log|2x+√4x2+1|−12log2+C[∴log(mn)=logm−logn]=12log|2x+√4x2+1|+C
(∵12 log 2 is constant and constant +constant+C)