Integrate the following functions. ∫e2x−1e2x+1dx.
∫e2x−1e2x+1dx=∫(ex.ex−1)(ex.ex+1)dx=∫ex(ex−1ex)ex(ex+1ex)dx=∫(ex−e−x)ex+e−xdx Let ex+e−x=t⇒ex−e−x=dtdx⇒dx=dtex−e−x ∫e2x−1e2x+1dx=∫(ex−e−x)tdtex−e−x=∫1tdt=log|t|+C=log|ex+e−x|+C
Integrate the following functions. ∫e2x−e−2xe2x+e−2xdx.