Integrate the following functions. ∫e2x−e−2xe2x+e−2xdx.
∫e2x−e−2xe2x+e−2xdx Let e2x+e−2x=t⇒2e2x−2e−2x=dtdx⇒dx=dt2(e2x−e−2x) ∴∫e2x−e−2xe2x+e−2xdx=∫e2x−e−2xtdt2[e2x−e−2x]=12∫1tdt=12log|t|+C=12log|e2x+e−2x|+C
Integrate the following functions. ∫e2x−1e2x+1dx.