Integrate the following functions. ∫sec2x√tan2x+4dx.
∫sec2x√tan2x+4dx Let tanx=t⇒sec2x=dtdx⇒dx=dtsec2x ∴∫sec2x√tan2x+4dx=∫sec2x√t2+4dtsec2x=∫dt√t2+22=log|t+√t2+4|+C[∵∫dx√x2+a2=log|x+√x2+a2|]=log|tanx+√tan2x+4|+C(∵t=tanx)
Integrate ∫sec2x√tan2x+4dx
Integrate the following functions. ∫x√x+4dx.
Integrate the following functions. ∫6x+7√(x−5)(x−4)dx