Integrate the following functions. ∫sin−1x√1−x2dx.
Let I = ∫sin−1x√1−x2dx. Let sin−1x=t ⇒1√1−x2=dtdx⇒dx=√1−x2dt∴I=∫t√1−x2√1−x2dt=∫tdt=t22+C=(sin−1x)22+C
Integrate the following functions. ∫etan−1x1+x2dx.
Integrate the function. ∫xcos−1x√1−x2dx.
Integrate the following functions. ∫1√7−6x−x2dx.
Integrate the following functions. ∫2x1+x2dx.