Integrate the following functions. ∫sinx(1+cosx)2dx.
Let I=∫sinx(1+cosx)2dx Let 1+cosx=t⇒−sinx=dtdx⇒dx=dt−sinx ∴I=∫sinx(1+cosx)2dx=∫sinxt2×dt−sinx=−∫1t2dt=−∫t−2dt=−t−2+1−2+1+C=1t+C=11+cosx+C
Integrate the following functions. ∫sinx1+cosxdx.