Integrate the following functions.
∫x−1√x2−1dx.
Let I=∫x−1√x2−1dx=∫x√x2−1dx−∫1√x2−1dx=I1−I2.....(i)
Now, I1=∫x√x2−1dx.
Let x2−1=t⇒2x=dtdx⇒dx=dt2x
∴I1=∫x√tdt2x=12∫dt√t=12∫t−12dt=12[t1212]+C1=√t+C1=√x2−1+C1(∵t=x2−1)
Now, I2=∫1√x2−1dx
=log|x+√x2−1|+C2[∵∫dx√x2−a2=log|x+√x2−a2|]
On putting the values of I1 and I2 in Eq. (i), we get
∫x−1√x2−1dx=√x2−1=log|x+√x2−1|+C (where, C=C1−C2)