wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the following functions.
x+24xx2dx.

Open in App
Solution

Let x+2=Addx(4xx2)+Bx+2=A(42x)+Bx+2=2Ax+4A+B
On equating the coefficients of x and constant term on both sides, we get
2A=1A=12 and 4A+B=2B=4(x+2)=12(42x)+4x+24xx2dx=12(42x)+44xx2dx=1242x4xx2dx+4dx4xx2
Let I1=42x4xx2dx and I2=dx4xx2
Then x+24xx2dx=12I1+4I2...........(i)
Now, I1=42x4xx2dx
Let 4xx2=t(42x)dx=dtI1=dtt=2t+C1
=24xx2+C1.........(ii)
And I2=dx4xx2
[4xx2=(x24x)=(x2)24=[(2)2(x2)2]I2=1(2)2(x2)2dx=sin1(x22)+C2....(iii)[dxa2x2=sin1(xa)]
On substituting the values of I1 and I2 from Eqs. (ii)and (iii)in Eq. (i), we get

x+24xx2dx=12[24xx2]+4sin1(x22)+C(12C1+4C2=C)=4xx2+4sin1(x22)+C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon