Integrate the following functions.
∫x+2√4x−x2dx.
Let x+2=Addx(4x−x2)+B⇒x+2=A(4−2x)+B⇒x+2=−2Ax+4A+B
On equating the coefficients of x and constant term on both sides, we get
−2A=1⇒A=−12 and 4A+B=2⇒B=4⇒(x+2)=−12(4−2x)+4∴∫x+2√4x−x2dx=∫−12(4−2x)+4√4x−x2dx=−12∫4−2x√4x−x2dx+4∫dx√4x−x2
Let I1=∫4−2x√4x−x2dx and I2=∫dx√4x−x2
Then ∫x+2√4x−x2dx=−12I1+4I2...........(i)
Now, I1=∫4−2x√4x−x2dx
Let 4x−x2=t⇒(4−2x)dx=dt⇒I1=∫dt√t=2√t+C1
=2√4x−x2+C1.........(ii)
And I2=∫dx√4x−x2
[∵4x−x2=−(x2−4x)=−(x−2)2−4=[(2)2−(x−2)2]∴I2=∫1√(2)2−(x−2)2dx=sin−1(x−22)+C2....(iii)[∵∫dx√a2−x2=sin−1(xa)]
On substituting the values of I1 and I2 from Eqs. (ii)and (iii)in Eq. (i), we get
∫x+2√4x−x2dx=−12[2√4x−x2]+4sin−1(x−22)+C(∵−12C1+4C2=C)=−√4x−x2+4sin−1(x−22)+C