Integrate the following functions.
∫x+2√x2−1dx.
∫x+2√x2−1dx=∫x√x2−1dx+∫2√x2−1dx=I1+I2....(i)
Now, I1=∫x√x2−1dx,
Let x2−1=t⇒2xdx=dt⇒dx=dt2x
∴I1=∫x√t×dt2x=12∫dt√t=12∫t−12dt=12[2t12]=√t=√x2−1+C2(∵t=x2−1)
Now, I2=2∫1√x2−1dx=2log|x+√x2−1|+C1[∵∫dx√x2−a2=log|x+√x2−a2|]
On putting the values of I1 and I2 in Eq. (i), we get
I=√x2−1+2log|x+√x2−1|+C
where, C=C1+C2