Integrate the following functions.
∫x+2√x2+2x+3dx.
Let x+2=Addx(x2+2x+3)+B⇒x+2=A(2x+2)+B
⇒x+2=2Ax+(2A+B)
On equating the coefficient of x and constant term on both sides, we get
2A=1⇒A=12 and 2A+B=2⇒2×12+B=2⇒B=2−1=1⇒x+2=12(2x+2)+1∴∫x+2√x2+2x+3dx=∫12(2x+2)+1√x2+2x+3
Let I1=∫2x+2√x2+2x+3dx and I2=∫dx√x2+2x+3
Then ∫x+2√x2+2x+3dx=12I1+I2.....(i)
Now, I1=∫2x+2√x2+2x+3dx
Let x2+2x+3=t⇒(2x+2)dx=dt
∴I1=∫dt√t=∫t−12dt=t(−12)+1−12+1+C1=2√x2+2x+3+C1
and I2=∫dx√x2+2x+3=∫dx√x2+2x+(1)2+3−(1)2=∫dx√(x+1)2+(√2)2
Let x+1=t⇒dx=dt
I2=∫dt√t2+(√2)2=log|t+√t2+2|+C2[∵∫dx√x2+a2=log|x+√x2+a2|]=log|x+1+√(x+1)2+2|+C2=log|x+1+√x2+2x+3|+C2
On putting the values of I1 and I2 in Eq. (i), we get
∫x+2√x2+2x+3dx=12[2√x2+2x+3]+log|x+1+√x2+2x+3|+C[∴12C1+C2=C]=√x2+2x+3+log|x+1+√x2=2x+3|+C