Integrate the following functions. ∫x2√x6+a6dx.
∫x2√x6+a6dx=∫x2√(x3)2+a6dx Let x3=t⇒3x2=dtdx⇒dx=dt3x2 ∴∫x2√(x3)2+a6dx=∫x2√t2+a6dt3x2=13∫dt√t2+a6=13log|t+√t2+a6|+Cn[∵∫dx√x2+a2=log|x+√x2+a2|] =13log|x3+√x6+a6|+C(∵t=x3)
Integrate the following functions. ∫3x2x6+1dx.