Integrate the following functions. ∫x3sin(tan−1x4)(1+x8)dx
∫x3sin(tan−1x4)(1+x8)dx Let tan−1x4=t⇒11+x8.4x3=dtdx⇒dx=(1+x8)4x3dt ∴I=∫x3sint(1+x8).1+x8dt4x3=14∫sin tdt=−14cos t+C=−14cos(tan−1x4+C)
∫x3sin(tan−1x4)1+x8dx
Integrate the following functions w.r.t. x.
∫x3√1−x8 dx.