Integrate the following functions.
∫x+3x2−2x−5dx.
Let (x+3)=Addx(x2−2x−5)+B
⇒(x+3)=A(2x−2)+B⇒x+3=2Ax−2A+B
On equating the coefficients of x and constant term on both sides, we get
2A=1⇒A=12 and−2A+B=3⇒B=4⇒(x+3)=12(2x−2)+4∴∫x+3x2−2x−5dx=∫12(2x−2)+4x2−2x−5dx=12∫(2x−2)x2−2x−5dx+4∫1x2−2x−5dx
Let I1=∫2x−2x2−2x−5dx and I2∫1x2−2x−5dx
∴∫x+3x2−2x−5dx=12I1+4I2.......(i)
Now, I1=∫2x−2x2−2x−5dx
Let x2−2x−5=t⇒(2x−2)dx=dt
∴I1=∫dtt=log|t|+C1=log|x2−2x−5|+C1.......(ii)
and I2=∫1x2−2x−5dx=∫1(x2−2x+1)−6dx=∫1(x−1)2−(√6)2dx
=12√6log∣∣∣x−1−√6x−1+√6∣∣∣.........(iii)[∵∫dxx2−a2=12alog∣∣x−ax+a∣∣]
On substituting the values I1 and I2 from Eqs. (ii) and (iii) in Eq (i), we get
∫x+3x2−2x−5dx=12log|x2−2x−5|+4[12√6log∣∣∣x−1−√6x−1+√6∣∣∣]+C[∴12C1+4C2=C]=12log|x2−2x−5|+2√6log∣∣∣x−1−√6x−1+√6∣∣∣+C