wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the following functions.
x+3x22x5dx.

Open in App
Solution

Let (x+3)=Addx(x22x5)+B
(x+3)=A(2x2)+Bx+3=2Ax2A+B
On equating the coefficients of x and constant term on both sides, we get
2A=1A=12 and2A+B=3B=4(x+3)=12(2x2)+4x+3x22x5dx=12(2x2)+4x22x5dx=12(2x2)x22x5dx+41x22x5dx
Let I1=2x2x22x5dx and I21x22x5dx
x+3x22x5dx=12I1+4I2.......(i)
Now, I1=2x2x22x5dx
Let x22x5=t(2x2)dx=dt
I1=dtt=log|t|+C1=log|x22x5|+C1.......(ii)
and I2=1x22x5dx=1(x22x+1)6dx=1(x1)2(6)2dx
=126logx16x1+6.........(iii)[dxx2a2=12alogxax+a]
On substituting the values I1 and I2 from Eqs. (ii) and (iii) in Eq (i), we get

x+3x22x5dx=12log|x22x5|+4[126logx16x1+6]+C[12C1+4C2=C]=12log|x22x5|+26logx16x1+6+C


flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon