Integrate the following functions. ∫x√x+4dx.
∫x√x+4dx=∫x+4−4√x+4dx=∫x+4√x+4dx−4∫1√x+4dx=∫(x+4)12dx−4∫(x+4)−12dx=(x+4)(12)+1(12)+1−4(x+4)(−12)+1(−12)+1+C=23(x+4)32−8(x+4)12+C
Integrate the following functions. ∫6x+7√(x−5)(x−4)dx
Integrate the following functions. ∫sec2x√tan2x+4dx.
Integrate the following functions w.r.t. x.
∫1(x2+1)(x2+4)dx.
Integrate the rational functions. ∫5x(x+1)(x2−4)dx.
Integrate the following functions. ∫1x−√xdx.