Integrate the following functions. ∫√ax+b dx.
∫√ax+b dx=∫(ax+b)12dx[∵∫(ax+b)ndx=(ax+b)n+1a(n+1)]=(ax+b)(12)+1a(12+1)+C=(ax+b)32a(32)+C=23a(ax+b)32+C
Integrate the following functions. ∫1√(x−a)(x−b)dx
Integrate the following functions. ∫ sin (ax+b)cos (ax+b)dx.
Integrate the following functions w.r.t. x.
∫1cos(x+a) cos(x+b)dx.
∫1√x+a+√x+bdx.