Integrate the following functions. ∫tan2(2x−3)dx.
∫tan2(2x−3)dx=∫sec2(2x−3)dx−∫1dx(∵tan2x=sec2x−1) Let 2x-3 =t ⇒2dx=dt⇒dx=12dt∴∫sec2(2x−3)dx−∫dx=12∫(sec2t)dt−∫1dx=12tant−x+C=12tan(2x−3)−x+C=tan(2x−3)2−x+C
Integrate the following functions. ∫e(2x+3)dx
Integrate the following functions. ∫x+2√x2+2x+3dx.
Integrate the following functions. ∫4x+1√2x2+x−3dx.