Integrate the following functions.
∫(x3−1)13x5dx.
∫(x3−1)13x5dx=∫(x3−1)13x3.x2dx
Let x3−1=t⇒x3=t+1
On differentiating w.r.t.x, we get 3x2=dtdx⇒dx=dt3x2
∴∫(x3−1)13x3.x2dx=∫t13(t+1)x2dt3x2=13∫(t43+t13)dt=13[t7373+t4343]+C=13[37t73+34t43]+C=17t73+14t43+C=17(x3−1)73+14(x3−1)43+C