Integrate the following functions.
∫x√x+2dx.
∫x√x+2dx=∫(x+2−2)√x+2dx=∫(x+2)√x+2dx−2∫√x+2dx=∫(x+2)32dx−2∫(x+2)12dx=(x+2)(32+1)(32+1)−2(x+2)(12+1)(12)+1+C[∵∫xndx=xn+1n+1]=25(x+2)52−2×23(x+2)32+C=25(x+2)52(x+2)52−43(x+2)32+C
Alternate MethodLet x+2 =t or x=(t−2)⇒1=dtdx⇒dx=dt
Then, ∫x√x+2dx=∫(t−2)√tdt=∫(t32−2t12)dt
25(x+2)52−43(x+2)32+C