wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the following functions w.r.t.x:
x4x42x23

Open in App
Solution

We have,
I=x4x42x23dx

Let
t=x2

dtdx=2x

dt2=x dx

Therefore,
I=12dt4t22t3

I=18dtt2t234

I=18dtt2t2+11611634

I=18dt(t14)2(134)2

I=18⎢ ⎢ ⎢ ⎢12134ln⎜ ⎜ ⎜ ⎜t14134t14+134⎟ ⎟ ⎟ ⎟⎥ ⎥ ⎥ ⎥+C

I=18⎢ ⎢ ⎢ ⎢1132ln(4t1134t1+13)⎥ ⎥ ⎥ ⎥+C

I=1413ln(4t1134t1+13)+C

On putting the value of t, we get
I=1413ln(4x21134x21+13)+C

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon