Integrate the following functions w.r.t. x.
∫1(x2+1)(x2+4)dx.
Let 1(x2+1)(x2+4)dx=Ax+Bx2+1+Cx+Dx2+4⇒ 1=(Ax+B)(x2+4)+(Cx+D)(x2+1)On comparing the coefficients of x3,x2,x and constant term on both sides, we getA+C=0,B+D=0, 4A+C=0 and 4B+D=1On solving these equations, we get A=0,C=0,B=13 and D=−13∴ ∫1(x2+1)(x2+4)dx=13∫(1x2+1−1(x2+4))dx=13{tan−1x−12tan−1(x2)}+C