Integrate the following functions w.r.t. x.
∫1x2(x4+1)dx.
Let I=∫1x2(x4+1)dx=∫1x2{x4(1+1x4)}3/4 dx =∫1x2.x3(1+1x4)3/4dx=∫1x5(1+1x4)3/4dxPut 1+1x4=t⇒ −4x5dx=dt⇒ 1x5dx=−dt4∴ I=1−4∫1t3/4dt=−14[t1/41/4]+C=−(1+x−4)1/4+C
∫1(x2+1)(x2+4)dx.
∫1x√ax−x2dx
∫ex(1+ex)(2+ex)dx.
Integrate the following functions. ∫x−1√x2−1dx.