Integrate the following functions w.r.t. x.
∫1x√ax−x2dx
Let I = ∫1x√ax−x2dx Put x=at⇒ dx=−a dtt2∴ I=∫1at√a(at)−a2t2(−at2)dt=∫−aa.a√t−1dt=−1a∫(t−1)−1/2dt=−1a.(t−1)(−1/2)+1−(1/2)+1+C=−2a√t−1+C=−2a√ax−1=C (∵ x=at⇒ t=ax)=−2a√a−xx+C
∫1x2(x4+1)dx.
∫1√x+a+√x+bdx.
∫1(x2+1)(x2+4)dx.
∫ex(1+ex)(2+ex)dx.
∫1x−x3dx