Integrate the following functions w.r.t. x.
∫1x−x3dx
∫1x−x3dx=∫1x(1−x2)dx=∫1x(1−x)(1+x) ...(i)Let 1x(1−x)(1+x)=Ax+B(1−x)+C(1+x)⇒ 1=A(1−x)(1+x)+B(x)(1+x)+C(x)(1−x)⇒ 1=A(1−x2)+B(x+x2)+C(x−x2)⇒ 1=x2(B−A−C)+x(B+C)+AOn equating the coefficients of x2, x and constant term on both sides, we get−A+B−C=0, B+C=0 and A=1On solving these equations, we get A=1, B=12 and C=−12From Eq. (i), we get ∫1x(1−x2)dx=∫1xdx+12∫11−x−12∫11+xdx=log |x|−12log|1−x|−12log |1+x|+C=log |x|−12log {|1+x||1−x|}+C=12|x2|−12log |1−x2|+C=12log |x21−x2|+C