Integrate the following functions w.r.t. x.
∫5x(x+1)(x2+9)dx
Let ∫5x(x+1)(x2+9)=Ax+1+Bx+Cx2+9⇒ 5x=A(x2+9)+(Bx+C)(x+1)⇒ 5x=Ax2+9A+Bx2+Bx+Cx+COn equating the coefficients of x2,x and constant term on both sides, we getA+B=0, B+C=5, 9A+C=0On solving these equations, we getA=−12,B=12 and C=92∴ ∫5x(x+1)(x2+9)dx=∫(−12)(x+1)dx+∫12x+92x2+9dx=−12∫1x+1dx+12∫(x+9x2+9)dx=−12log |x+1|+12.12∫2xx2+9dx+92∫1x2+9dx=−12log|x+1|+14|x2+9|+92.13tant−1(x3)+C [∵ ∫dxa2+x2=1atan−1(xa)]=−12log|x+1|+14|x2+9|+32tan−1(x3)+C