Integrate the following functions w.r.t. x.
∫cos x√4−sin2xdx.
Let I=∫cos x√4−sin2xdxPut sin x=t⇒ cos x dx=dt∴ I=∫cos x√4−t2dtcos x=∫1√4−t2dt=sin−1(t2)+C [∫dx√a2−x2=sin−1(xa)]=sin−1(sin x2)+C
∫1cos(x+a) cos(x+b)dx.
Find the integrals of the functions. ∫cosx−sinx1+sin2xdx.