Integrate the following functions w.r.t. x.
∫ex(1+ex)(2+ex)dx.
Let I=∫ex(1+ex)(2+ex)dxPut ex=t⇒ exdx=dt∴ I=∫ex(1+t)(2+t)dtex=∫1(1+t)(2+t)dtLet 1(1+t)(2+t)=A(1+t)+B(2+t)⇒ 1=A(2+t)+B(1+t)=(2A+B)+t(A+B)
On equating the coefficients of t and constant term on both sides , we get A + B = 0 and 2A + B = 1
On solving both equations, we get A = 1 and B = -1
∴ I=∫1(1+t)dt−∫1(2+t)dt=log |1+t|−log |2+t|+C=log∣∣1+t2+t∣∣+C=log∣∣1+ex2+ex∣∣+C