Integrate the following functions w.r.t. x.
∫x3√1−x8 dx.
Let I=∫x3√1−x8 dxPut x4=t⇒ 4x3dx=dt⇒ dx=dt4x3∴ I=∫x3√1−t2dt4x3=14∫1√1−t2dt=14sin−1t+C [∫dx√a2−x2=sin−1(xa)]=14sin−1(x4)+C
∫1√x+a+√x+bdx.
Integrate the following functions. ∫x3sin(tan−1x4)(1+x8)dx
∫1x√ax−x2dx
∫ex(1+ex)(2+ex)dx.