i)
∫x2(x2+1)(x2+4)dx
∫(43(x2+4)−13(x2+1))dx
43∫1(x2+4)dx−13∫1(x2+1)dx
23tan−1x2−13tan−1x
∫x2(x2+1)(x2+4)dx=23tan−1x2−13tan−1x
ii)
∫1cos4x+sin4xdx
∫sec2xtan2x+1tan4x+1dx
tan−1(√2tanx+1)√2+tan−1(√2tanx−1)√2
∫1cos4x+sin4xdx=tan−1(√2tanx+1)+tan−1(√2tanx−1)√2C