wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the function 1sin3xsin(x+α)

Open in App
Solution

1sin3xsin(x+α)=1sin3x(sinxcosα+cosxsinα)
=1sin4xcosα+sin2xcosxsinα
=1sin2xcosα+cotxsinα
=cosec2xcosα+cotxsinα
Let cosα+cotxsinα=tcosec2xsinαdx=dt
1sin3xsin(x+α)dx=cosec2xcosα+cotxsinαdx
=1sinαdtt
=1sinα[2t]+C
=1sinα[2cosα+cosxsinα]+C
=2sinαcosα+cosxsinαsinx+C
=2sinαsinxcosα+cosxsinαsinx+C
=2sinαsin(x+α)sinx+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon