wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the function 1xx3

Open in App
Solution

1xx3=1x(1x2)=1x(1x)(1+x)
Let 1x(1x)(1+x)=Ax+B(1x)+C1+x ........ (1)
1=A(1x2)+Bx(1+x)+Cx(1x)
1=AAx2+Bx+Bx2+CxCx2
Equating the coefficients of x2,x, and constant term, we obtain
A+BC=0
B+C=0
A=1
On solving these equations, we obtain
A=1,B=12, and C=12
From equation (1), we obtain
1x(1x)(1+x)=1x+12(1x)12(1+x)
1x(1x)(1+x)dx=1xdx+1211xdx1211+xdx
=log|x|12log|(1x)|12log|(1+x)|
=log|x|log|(1x)12|log|(1+x)12|
=log∣ ∣x(1x)12(1+x)12∣ ∣+C
=log∣ ∣(x21x2)12∣ ∣+C
=12logx21x2+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon