1x−x3=1x(1−x2)=1x(1−x)(1+x)
Let 1x(1−x)(1+x)=Ax+B(1−x)+C1+x ........ (1)
⇒1=A(1−x2)+Bx(1+x)+Cx(1−x)
⇒1=A−Ax2+Bx+Bx2+Cx−Cx2
Equating the coefficients of x2,x, and constant term, we obtain
A+BC=0
B+C=0
A=1
On solving these equations, we obtain
A=1,B=12, and C=−12
From equation (1), we obtain
1x(1−x)(1+x)=1x+12(1−x)−12(1+x)
⇒∫1x(1−x)(1+x)dx=∫1xdx+12∫11−xdx−12∫11+xdx
=log|x|−12log|(1−x)|−12log|(1+x)|
=log|x|−log|(1−x)12|−log|(1+x)12|
=log∣∣
∣∣x(1−x)12(1+x)12∣∣
∣∣+C
=log∣∣
∣∣(x21−x2)12∣∣
∣∣+C
=12log∣∣∣x21−x2∣∣∣+C