Let 5x(x+1)(x2+9)=A(x+1)+Bx+C(x2+9) ......... (1)
⇒5x=A(x2+9)+(Bx+C)(x+1)
⇒5x=Ax2+9A+Bx2+Bx+Cx+C
Equating the coefficients of x2,x, and constant term, we obtain
A+B=0
B+C=5
9A+C=0
On solving these equations, we obtain
A=−12,B=12, and C=92
From equation (1), we obtain
5x(x+1)(x2+9)=−12(x+1)+x2+92(x2+9)
∫5x(x+1)(x2+9)dx=∫{−12(x+1)+(x+9)2(x2+9)}dx
=−12log|x+1|+12∫xx2+9dx+92∫1x2+9dx
=−12log|x+1|+14∫2xx2+9dx+92∫1x2+9dx
=−12log|x+1|+14log|x2+9|+92⋅13tan−1x3
=−12log|x+1|+14log(x2+9)+32tan−1x3+C